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Abstract

In this paper, the baseline performance level of Al Ain Public Bus Service is evalu-
ated using Data Envelopment Analysis (DEA) based on some selected input (travel 
time per round trip, total number of stops, total number of operators, total number 
of buses) and output (daily ridership and vehicle-kilometer) variables. Two types of 
scenarios were developed and tested. The first set of scenarios aimed at investigating 
the possibility of reducing the operating cost while maintaining the same perfor-
mance levels (efficiency and effectiveness) for the routes. The second set of scenarios 
was used to demonstrate how the baseline performance levels can be improved by 
slightly altering the route alignment (and subsequently input and output variables). 
Sensitivity analysis was then conducted to measure the efficiency and effectiveness 
of each route. Conclusions on how the transit authority can reduce daily operating 
hours while maintaining the existing performance level are made. Also, suggestions 
are presented on how to improve the overall performance level of the bus service by 
changing some route characteristics.
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Introduction
Public transit systems are essential parts of the modern urban life. In some coun-
tries such as the United Arab Emirates (UAE), where such mode of transport is 
relatively new and people can easily avail private vehicles, it is quite essential to 
operate public bus service efficiently and effectively to make this mode choice 
more favorable to private vehicles. 

Public bus services should operate efficiently and effectively, from both demand 
and supply perspectives. Although the general terminologies of “efficiency” and 
“effectiveness” may seem to be closely related, these two measures are required 
to be considered separately in public transit system (Hatry 1980; Chu et al. 1992). 
As for effectiveness, people should feel that buses are available to meet their daily 
travel demand with lower cost. As such, effectiveness can be measured by service 
utilization (ridership), service quality, and accessibility to the service (Fielding et 
al. 1985). As for efficiency, the service authority typically aims at minimizing the 
operational cost without hampering the daily travel demand of the people. As 
such, efficiency measures describe the relationship between resource inputs and 
produced output and includes indicators of overall cost efficiency, labor utilization, 
and vehicle utilization (Fielding et al. 1985). Both efficiency and effectiveness were 
used as measures within the DEA context. In fact, much of the reported literature 
has used the two measure types to evaluate transit system performance within the 
DEA context (Chu et al. 1992; Karlaftis 2004; Lao and Liu 2009). 

It is important to seek optimum solutions to operation parameters (e.g., schedules, 
frequencies) without jeopardizing the necessities of operation (meeting demands 
while achieving the highest levels of customer satisfaction). Balancing both sides 
of demand and supply issues is not an easy task and usually entails reduction of 
service quality to attain more reasonable levels of expenditures. That is, minimizing 
operation and maintenance costs (input) usually comes at the expense of a reduc-
tion in ridership. Similarly, maximizing throughput (ridership) is usually associated 
with higher operational cost. 

Commonly, the goal of transit system authorities is to provide as much efficient 
and effective service to users regardless of the operating costs (Chu et al. 1992; 
Karlaftis 2004), especially during the first few years of operation until the systems 
are mature enough and are well reputed to attract traditionally private car users. 
This is commonly coupled with continuous assessment of performance, and even 
setting benchmarks and to improve service (Park and Kamp 2004). In economics, 
performance assessment or efficiency are measured by comparing levels of output 
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to input (Cooper et al. 2004; Fare et al. 1994; Nash 2006; Barnum et al. 2007). The 
assessment normally starts with identifying the important operation characteris-
tics (inputs) and the targeted outputs. In public transit systems, multiple outputs 
are produced by multiple inputs (Barnum et al. 2007), and it is difficult to aggregate 
all input and output variables into a single scale to measure the performance levels. 
Data Envelopment Analysis (DEA) provides an innovative approach to resolve such 
difficulties to measure the relative efficiency of the system (Barnum et al. 2007). 

This paper aims at developing and presenting an approach using the DEA method 
that can be used to investigate the operational characteristics of service, identify 
drawbacks in operation through GIS-based data analysis, and provide a framework 
that can be adopted to mitigate such deficiencies in a cost effective manner. The 
approach is demonstrated through the newly-introduced bus service in Al Ain in 
the UAE. 

This paper builds upon earlier data collection for the study of evaluating public bus 
services in Abu Dhabi and Al Ain in the UAE (RTTSRC 2010). The paper describes 
the data collection methodology and the obtained results aiming at evaluating the 
performance of Al Ain public bus service from an operational perspective. This 
entails analyzing the field data of all bus routes in Al Ain. Two types of scenarios 
were developed and tested. The first set of scenarios aims at investigating the pos-
sibility of reducing operating cost while maintaining the same performance levels 
(efficiency and effectiveness) for the routes. The second set of scenarios was used 
to demonstrate how the baseline performance levels can be improved by slightly 
altering the route alignment (and subsequently input and output variables). Sensi-
tivity analysis was then conducted to measure the efficiency and effectiveness of 
each route. 

Literature Review
A number of studies were conducted to identify the key performance indicators of 
public transit services based on the goals and objectives of the authorities (Tomazi-
nis 1977; Gilbert and Dajani 1975; Fielding et al. 1978; Meyer and Gomez-Ibanez 
1981; Forkenbrock and Dueker 1979; Bly and Oldfield 1986; Cervero 1984). These 
studies used relatively variant performance indicators. As such, these studies can-
not be used to reach a generalized conclusion (Benjamin and Obeng 1990; Karlaftis 
2004). This has led some researchers to conclude that it may be necessary to use 
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a more concise yet reliable set of indicators to describe the public transit system 
performance (Karlaftis 2004). 

Anderson and Fielding (1982) and Fielding et al. (1985), in an effort to reduce the 
number of indicators, used factor analysis to reduce 48 performance indicators to 
7 measures. Benn (1995) selected a number of inputs and categorized these into 
five broad groups to determine the evaluation standards: route design, schedule 
design, economics and productivity, service delivery and monitoring, and pas-
senger comfort and safety. The study concluded that service quality and operating 
cost were the most two important factors for the users to evaluate the overall 
service effectiveness. 

In general, in transit systems, labor, capital and energy are used as inputs, while 
efficiency measures such as vehicle kilometers, seat kilometers, or passenger kilo-
meters are used as outputs (Fielding et al. 1985; De Borger et al. 2002). Karlaftis 
(2004) further defined each of these input levels using quantitative measures. 
For example, the labor input factor is defined as the total number of employees 
(including operators, maintenance staff, and administrative personnel). Capital is 
defined as the total number of vehicles operated by the system. Energy is defined 
as the total annual amount of fuel used by the system (in gallons). Vehicle-miles 
and passenger-miles were used as the output variables to measure the efficiency 
and effectiveness of U.S. transit systems. Sanchez (2009) and Sakano et al. (1997) 
used the number of full-time workers, fuel consumption, and number of operating 
buses as the input variables.

Sanchez (2009) used a number of output variables such as vehicle kilometers, seat-
ing capacity, service hours, number of passengers, and average age of the fleets to 
evaluate bus service performance of Spanish transport systems. Lao and Liu (2009) 
evaluated the performance of bus lines from the operational and spatial aspects. 
Operating time, round-trip distance, and number of stops were used as inputs to 
measure operational efficiency. Total number of bus users, population age 65+ 
years, and number of persons with disabilities using the service were used as the 
inputs to measure spatial effectiveness. In both cases, total annual number of pas-
sengers was used as the output.

There are two approaches to assess the performance of the transit system: either by 
comparing to standards or by measuring and assessing the relative efficiencies if no 
standards are available. As there are no standards available to benchmark service 
in the UAE, the second approach was chosen to assess bus service performance. 
There are several methods to measure and assess performance. The methods can 



Operational Performance of Public Bus Systems Using GIS-based Data Envelopment Analysis

23

be classified as parametric and non-parametric tests. Pucher (1982) used correla-
tion coefficients to measure performance. Karlaftis et al. (1997) applied a t-test 
technique to measure whether there was a significant change in the performance 
of transit system of two models. Boschken (2000) and Obeng and Azam (1995) 
used the ordinary least square methods (OLS) to calculate the production and 
cost functions, respectively. All of these are parametric techniques to measure the 
performance of a transit system.

These parametric techniques entail assumptions on the functional forms of the 
production or cost functions. This motivated researchers to use non-parametric 
approaches that entail fewer assumptions (Sanchez 2009). The non-parametric 
technique known as Data Envelopment Analysis (DEA) has been widely used to 
measure the efficiencies and effectiveness of public transit systems (Zhu 2003). 
DEA was used in many studies to evaluate the public transit service performance 
(Cowie and Asenova 1999; Pina and Torres 2001; Kerstens 1999; Odeck and Alkadi 
2001; Boiĺ e 2001 and Nakanishi and Norsworthy 2000). Chu et al. (1992) developed 
a single index for measuring service efficiency as well as service effectiveness of 
public transit agencies using DEA. Barnum et al. (2008) evaluated the performances 
of 46 bus routes of U.S. transit systems using the DEA method.

DEA is a non-parametric approach and linear programming technique to measure 
relative efficiencies of a set of peer units called Decision Making Units (DMUs). This 
is based on the original work of Farrel (1957) and was later popularized by Charnes 
et al. (1978) as the CCR model. The CCR model is fairly inflexible in the sense that it 
assumes constant returns to scale in its production possibility set (Karlaftis 2004). 
Later, Banker et al. (1984) developed an efficiency frontier structured by both con-
stant and decrease returns to scale. The underlying assumption is that each DMU 
requires certain resources or inputs to produce its goods or services (outputs). It is 
used to empirically measure productive efficiency of DMUs by comparing it to the 
best practice of a DMU or combination of DMUs (Lao and Liu 2009). This model is 
called the BCC model.

DEA Model
DEA is a linear programming-based technique for measuring the relative perfor-
mance of organizational units where the presence of multiple inputs and outputs 
makes comparisons difficult. Such organizational units are referred to as DMUs. In 
this work, DMU is the term used to refer to bus routes. Extensive literature and tuto-
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rials on DEA can be found in Emrouznejad (2001). DEA models can be classified based 
on their orientation into two types: input- and output-oriented models. The input-
oriented models minimize the inputs while producing at least the observed output 
levels. The output-oriented models improve the performance of a DMU by maximiz-
ing its outputs, while consuming at most the observed input levels (Forsund 2001). 

The type of model orientation to use depends on the objective of the decision 
maker. If the objective is to minimize the cost of service, the input-oriented DEA 
model is chosen. On the other hand, if the objective is to maximize the output 
level, the output-oriented model is chosen. In this study, the output-oriented BCC 
model was chosen to maximize ridership (number of passengers). In the UAE, 
the public transit system was recently introduced with the objective of offering 
services regardless of operational cost. Another reason to choose the BCC model 
is that it employs a Variable Return to Scale (VRS) assumption, which means that 
efficiency may increase or decrease with a change in size in input or output. Math-
ematically, VRS suggests that the estimated production frontier can pass anywhere 
relative to the origin in input-output space (Lao and Liu 2009).

Mathematically, the BCC model (Banker et al. 1984) can be written as follows:

Where,

j : Index of decision making unit (DMU), j=1,…,J

n : Index of input, n=1,…,N

m : Index of output, m=1,…,M

xnj : The nth input for the jth DMU

ymj : The mth output for the  jth DMU
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um,vn : Non-negative scalars (weights) for the mth output and the nth input

θk :Efficiency/Effectiveness ratio of DMUk

The targeted DMU (of a given evaluation) is designated as DMUk. The BCC model 
(Eq. 1) maximizes the ratio of weighted outputs to the weighted inputs. The 
weights um and vn are the decision variables. These weights are changed until the 
ratio (of the weighted outputs to the weighted inputs) is maximized for the target 
DMUk, while same weights are applied to all DMUs. The value of the ratio, θ, in (1) 
is referred to as the efficiency/effectiveness score of DMUk, where 0 ≤ θ ≤ 1. For a 
fully efficient DMU, the value of θ is 1. It is to be noted that the weights are the deci-
sion variables and that the values of inputs and outputs are the actual observed 
values. Constraint (3) ensures the DEA model’s Variable Returns to Scale (VRS). 
Constraint (4) imposes non-negativity restrictions for the weights. 

Al Ain Bus Services
Public bus service has been operated in the UAE for more than a decade. The 
Department of Transport (DOT) in the Emirate of Abu Dhabi conducted major 
upgrades to the service (new routes, buses, etc.) in Al Ain around 2009 and 2010. 
Currently, there are eight routes operating in the city. Figure 1 illustrates the paths 
of the eight inter-city bus routes in Al Ain. This paper uses the GPS-based collected 
data to illustrate how the DEA model, combined with a GIS analysis technique, can 
be used to enhance the operational efficiency of the bus routes. 

Figure 1. Paths of the inter-city bus routes in Al Ain city
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Methodology
Data Collection and Analyses
Extensive surveys were carried out on all eight routes for three different peak peri-
ods (7–9 AM, 12–2 PM, and 5 to 9 PM) daily, over a one-week duration. Three types 
of surveys were used: a user opinion survey, an operator survey, and a log survey 
(RTTSRC 2010). Only the log survey data were used in this paper to measure the 
performance level of the Al Ain bus service. In this survey, the locations of all bus 
stops (latitude and longitude data) were collected using GPS devices. The numbers 
of passengers boarding/alighting at each bus stop were counted manually and 
inserted into the same log survey form.

The collected data were used to estimate the total number of stops on each route 
direction and their exact locations, route lengths, average number of passengers 
per day on each route, travel time of each trip for all routes, operating hours, total 
number of buses operated on each route, total number of operators working on 
each route, user’s concerns about each route, etc.

Selection of Input and Output Variables for the DEA Model
As previously indicated, labor, capital and energy measures are the most com-
monly-used inputs in literature. On the other hand, vehicle kilometers, seat kilo-
meters, or passenger kilometers are the most commonly-used outputs (De Borger 
et al. 2002). Because of the absence of the actual cost data for labor, fuel, and other 
operational expenses, many researches have used different input variable sets to 
represent the cost variables (Karlaftis 2004; Lao and Liu 2009). Based on the types 
of input and output variables, three approaches were identified in the literature 
to use DEA to measure the efficiency and effectiveness of a transit system. The 
approaches are 1) separate sets of input and output variables (Chu et al. 1992); 2) 
separate input but same output variables (Lao and Liu 2009); and 3) same input but 
separate output variables (Karlaftis 2004). 

As an example for the separate inputs separate outputs approach, Chu et al. (1992) 
used annual vehicle operating time, annual maintenance expenses, annual adminis-
trative expenses, and annual other expenses as input variables and annual revenue 
vehicle hours as the output variable to measure efficiency. They used urbanized 
area population density, proportion of households with automobile, annual rev-
enue vehicle hours, and annual financial assistance per passenger as the input 
variables and annual unlinked passenger trips as the output variable to measure 
effectiveness. 
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As an example of separate inputs and same output approach, Lao and Liu (2009) 
used operation time, round-trip distance, and number of bus stops as the input 
variables for measuring operational efficiency. They used number of commuters 
using buses, population age 65+, and persons with disabilities as the input variables 
for effectiveness measurement. They used number of total passengers as the out-
put variable for measuring both efficiency and effectiveness of the transit system. 

As an example of same input but separate output variables, Karlaftis (2004) used 
total number of employees, total annual amount of fuel used by the system, and 
total number of vehicles as the input variables to measure both efficiency and 
effectiveness. The output variables of vehicle-miles and ridership were used to 
measure the efficiency and effectiveness, respectively.

Due to the unavailability of detailed cost and population data, the third approach 
was followed in this study. Earlier studies indicated that cost of operating a bus 
route is related to four specific measuresy: number of stops (Lao and Liu 2009), 
number of operators, number of operating buses (Sanchez 2009), and average 
travel time. As the objective of the study was to measure the relative performance 
of the bus routes, these four variables were selected as the input variables repre-
senting the broad cost category for the DEA model proposed in this paper. For 
example, number of operators is an implicit representation of labor cost; number 
of operating buses is an implicit representation of capital cost, and number of stops 
together with average travel time will both implicitly represent fuel cost. 

The output of a transit system can be quantified using vehicle-kilometers and/
or passenger boarding (Karlaftis 2004). The vehicle-kilometers variable is related 
to the service produced or efficiency. Passenger boarding is more related to the 
consumption of services; more passengers indicates more utilization, more con-
sumption of service, or better effectiveness. Therefore, vehicles-kilometers and 
passenger boarding or ridership data were selected as output variables to measure 
transit service efficiency and effectiveness, respectively (Karlaftis 2004; Fielding 
1987). The four mentioned input variables were used to measure both efficiency 
and effectiveness of the Al Ain transit system.

All field data were prepared in the form of round-trip data per day to provide 
consistency. The DEA model used in this study has four input and two output 
variables, as shown in Table 1. The DEA model in this case has eight DMUs (routes). 
It is to be noted that some data were extracted from DOT records: total number 
of trips per day on each route, number of vehicles operating on each route, and 
number of operators. Other variables such as total travel length and travel time for 
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each round trip, total number of stops, and average daily passengers were obtained 
from the field survey data. Table 1 shows the selected inputs and output variables 
of the baseline (current) operating conditions (for the DEA model). 

Table 1. Input and Output Variables of Baseline (Current)  
Operating Conditions (for DEA Model)

Route # 
(DMUs)

Input Variables Output Variable

Average 
travel time 
per round 
trip (hr)

# of 
vehicles

# of  
operators

Total # 
of stops 

(round trip)

Total avg. # of  
passengers per day  

(effectiveness 
measure)

Vehicle-km 
(per day) 
(efficiency 
measure)

900 2.43 6 15 98 3300 2016

930 3.20 8 20 126 3690 3348

940 2.78 6 15 121 3973 2052

950 2.72 6 15 128 2078 2124

960 2.45 6 15 91 2227 2556

970 3.10 8 20 130 2384 3456

980 3.26 8 20 119 4425 2304

990 3.85 10 25 147 3895 3535
 

DEA is used to measure the efficiency of a system, given the inputs that represent 
the cost items or operational characteristics and the outputs of the system. If the 
output variable(s) reflects the efficiency measure (such as vehicle-kilometers per 
day), then the DEA is actually evaluating the “efficiency” of the bus system. If the 
output reflects the effectiveness measure (total number of passengers per day), 
then the DEA is actually evaluating the “effectiveness” of a system. That is, the 
DEA method is used herein to measure:

1.	 Effectiveness or cost-effectiveness: total number of passengers per day on 
each route is the output variable used as the measure for effectiveness—the 
measure to be maximized.

2.	 Efficiency or produced service efficiency: vehicle-kilometers per day on each 
route is the output variable used as the measure for efficiency. 

Detailed analyses were conducted on the minimum number of variables to be 
included. Initially, the analysis was conducted with seven input variables. More 
input variables will likely reveal that all routes are effective (or efficient). On the 
other hand, only a few input variables are likely to result in wrong conclusions on 
the effective (or efficient) routes, as the system cost is represented by only a few 
variables and ignoring important cost items. By trial and error, the authors con-
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cluded that the used four input variables are the minimum essential ones to be 
included. 

Each of these inputs is used to reflect one of the cost items. Number of vehicles 
on each route implicitly reflects the capital cost. Number of operators implicitly 
reflects operators cost. Average travel time and number of stops are intended to 
implicitly capture on the operational or fuel consumption cost. 

Efficiency and Effectiveness Score of Baseline Condition 
The efficiency and effectiveness measures were estimated using a readily-available 
Microsoft EXCEL macro (Productivity Tools 2005), which uses the same set of 
equations (Eqs. 1–4) to calculate the efficiency and effectiveness scores. The 
vehicle-kilometers and total average number of passenger per day were used as the 
output variables to measure the efficiency and effectiveness of the transit system, 
respectively. A scale to classify the efficiency and effectiveness scores was used, 
according to Lao and Liu (2009): 

There is empirical evidence to indicate a linear relationship between the inputs and 
output variable. Carrying out a linear regression analysis between the efficiency mea-
sure “vehicle kilometers per day on each route” and the input variables reveals sig-
nificant linear relationship with an R2 value of 0.98, and a significant F-value of about 
135. This justifies the use of the DEA approach as a linear programming approach.  

An efficiency and effectiveness score (θ) equal to 1 means an efficient and effective 
system. An efficiency and effectiveness score (θ) between 0.6 and 1 means a fairly 
efficient and fairly effective system. An efficiency and effectiveness score (θ) of 
less than 0.6 means and inefficient and ineffective system. Tables 2 and 3 show the 
efficiency and effectiveness scores, respectively. The DMUs efficiency and effective-
ness scores are classified according to the scale by Lao and Liu (2009).

Table 2. Efficiency Scores of Each Route for Baseline Condition

DMUs	 Efficiency scores	 Return-to-scale	 Comment

900	 1.00	 Increasing	 Efficient
930	 0.99	 Decreasing	 Fairly Efficient
940	 0.80	 Increasing	 Fairly Efficient
950	 0.83	 Increasing	 Fairly Efficient
960	 1.00	 Constant	 Efficient
970	 1.00	 Constant	 Efficient
980	 0.72	 Decreasing	 Fairly Efficient
990	 1.00	 Decreasing	 Efficient
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Table 3. Cost-Effectiveness Scores of Each Route for Baseline Condition

DMUs	 Cost-effectiveness Scores	 Return-to-scale	 Comment

900	 1.00	 Increasing	 Effective
930	 0.84	 Decreasing	 Fairly Effective
940	 1.00	 Constant	 Effective
950	 0.54	 Increasing	 Ineffective
960	 1.00	 Increasing	 Effective
970	 0.56	 Decreasing	 Ineffective
980	 1.00	 Constant	 Effective
990	 0.88	 Decreasing	 Fairly Effective

 
Based on the scales of the efficiency and effectiveness scores, Table 4 provides a 
summary in the form of a classification matrix for all routes.

Table 4. Classification of Al Ain Bus Routes According to Efficiency  
and Effectiveness Scores

	 Effective	 Fairly Effective	 Ineffective

Efficient	 900
	 960	 990	 970

Fairly efficient	 940
	 980	 930	 950

Inefficient	 -	 -	 -

 
It can be observed from the Table 4 that routes 900 and 960 are the most effec-
tive and efficient ones. One of the reasons for such high performance may be that 
these two routes have average demand levels as compared to other routes, but 
their input variables are the least among the others. As such, the DEA has identified 
these to be among the most effective routes.

No route is performing inefficiently in Al Ain, but routes 950 and 970 are perform-
ing ineffectively. This may be due to the relatively low passenger demands on these 
routes. The long distance (the geographical extension) that these two routes serve 
may be another reason for the low number of daily passengers. Route 950 oper-
ates between the Bawadi Mall (a major production/attraction commercial zone 
surrounded by low-income labor accommodation areas) and Al Towaya districts 
(a relatively high-income residential zone, where the majority of residents prefer to 
travel via their own private vehicles). In brief, one could argue that one route end is 
a major production/attraction zone while the other is not. This results in relatively 
low demands of bus passengers along this route.
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The 950 route can be envisioned to have two parts. The first part (from Bawadi to 
the city center) is the one highly used, and the second part (from the city center 
to Towaya) is not effectively used. The first part is mostly used by captive riders 
(low-income class), as the origin is close to their residence. The second part is 
mostly used also by captive riders because of the frequent stops that discourage 
high-income choice riders using the service. Also, with the destination being a high-
income residential zone, the demand on this part of the route is relatively small. 
Enhancing the service on the second part of the route by providing express service 
to the destination can help attract more choice riders.

Route 970 operates between the Al Bateen East district (a residential zone in the far 
suburban area of the city) and the Mubazzara district (a tourism and recreational 
area with very few or no residential accommodations). This may also explain the 
relatively low passenger demands along this route.

It can be said that the original alignment of these routes did not pay particular 
attention to the nature of the origin/destination zones. The original alignment 
of the city bus routes was determined to provide nearly full spatial coverage of 
the entire city, but not necessarily based on the expectations of the bus pas-
senger demands from/to the various zones. This is evident in the long travel time 
per round trip (some round trips amount for more than three hours) and the 
extremely high number of stops (some routes serve more than 100 bus stops), as 
shown in Table 1. 

Experimental Scenarios 
Two types of experimental scenarios were developed and tested. The first set of 
scenarios aimed at investigating the possibility of reducing operating cost while 
maintaining the same performance levels (efficiency and effectiveness) for the 
routes. The second set of scenarios aimed at demonstrating how the baseline 
performance levels can be improved by slightly altering the route alignment (and, 
subsequently, the input and output variables). The details of these two sets of sce-
narios are explained in more detail below.

Scenarios for assessing the impact of operating cost reduction
Routes 980, 930, and 950 were selected (from the “fairly efficient” group) for fur-
ther analysis. The three routes exhibit various levels of effectiveness (“effective,” 
“fairly effective,” and “ineffective,” respectively). Different scenarios were intuitively 
suggested and developed for further analysis. The objective was to check whether 
lowering the operating cost may affect the performance level significantly. The 
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actual operating cost data were not readily available in monetary value. As such, 
herein, it is assumed that operating cost is related to the hours of operation. That 
is, operational cost (increase or decrease) will be affected by a change in operating 
hours. If, for instance, operating hours are reduced by 20 percent from the current 
operating hours (18.5 hours daily), operational cost will be reduced by the same 
percentage. Herein, the term “operating hours” refers to the total number of hours 
for which bus service is provided.

Three separate scenarios were considered here to reduce operating cost. Scenario 1 
entails reducing the operating hours on route 980 by discontinuing the service dur-
ing times where the passenger loading (in any hour) is less than a specific thresh-
old (defined here as 5 passengers per hour). Scenarios 2 and 3 entail reducing the 
operating hours on routes 930 and 950, respectively, by discontinuing the service 
(operation hours) based on the defined threshold. In addition to these individual 
scenarios, combined scenarios were also considered—for instance, combining sce-
narios 1 and 2, 2 and 3, etc.

In deciding the trips to be discontinued, the hours that have very little impact on 
service attractiveness were selected. These hours were specified as those in which 
very few passengers use the service. The idea here was to eliminate round trips with 
very few passengers, which will subsequently reduce operating cost and have very 
little impact on service attractiveness to passengers.

It was found that for 3 hours 25 minutes of overall operating hours (1 round trip for 
the 980 route), the number of passengers was less than or equal to 5. Eliminating 
this round trip on the 980 route schedule reduces the overall vehicle-km per day. 
Herein, we assumed that the total number of passengers per day reduced by the 
number of passengers using the bus service eliminated a round trip. Similarly, it was 
found that a total of 5 hours 15 minutes (2 round trips) and 5 hours 30 minutes (2 
round trips) can be discontinued for routes 930 and 950, respectively.

It was assumed that the changes on one route affect the characteristics and, as 
such, the performance measures of that route. For example, discontinuing some 
round trips on route 980 (scenario 1: reducing overall operating hours by 3 hours 
25 minutes) affects vehicle-kilometers as well as total daily passengers and, as such, 
the performance measures (efficiency and effectiveness) of the route. The effect 
of changing the characteristics of the route (reducing its operating times) may or 
may not spread to other route performance measures, as will be explained later. 
The modified values of the output variables for the three individual scenarios are 
shown in Table 5. It is to be noted that the values of the input variables for these 
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scenarios are same as the base condition. The total number of round trips made by 
each of these three routes (930, 950 and 980) is 36 per day. Reduction percentages 
have been calculated based on the number of round trips per day. It was assumed 
that reducing 1 round trip for route 980 will reduce 2.7 percent of the total operat-
ing cost per day for this route.

Table 5. Modified Values of Input and Output Variables for All Scenarios

Scenario
Route # 
(DMUs)

Input variables Output variables

Percentage of  
reduction in  

operating cost

Avg. 
travel 

time per 
round 

trip (hr)
# of 

vehicles
# of  

operators

Total # 
of stops 
(round 

trip)

Total avg. 
# of  

passengers  
per day

Vehicle-
km (per 

day)

1 980 3.26 8 20 119 4,416 2,240 2.7%

2 930 3.2 8 20 126 3,669 3,162 5.56%

3 950 2.72 6 15 128 2,060 2,006 5.56%

Scenario for improving the performance level
Strategies to enhance the performance levels of the routes could entail changing 
route schedules, alignment, frequencies, etc. For the impact of these strategies to 
be quantified, transit planning tools are commonly used in some sort of “what if” 
type of studies. Such planning tools are commonly limited by internal assumptions 
that determine how passenger demand patterns are influenced by these strategies. 
The validity of such assumptions and the planning parameters represent limita-
tions to argue the validity of these models’ results. In this paper, we demonstrate 
how the DEA model can be used to assess the strategies meant to improve the 
performance levels. 

The performance matrix (Table 4) shows that routes 930 and 950 are the least 
performing routes. These two routes were selected for further analysis to improve 
their performance levels.

In general, the public bus routes of Al Ain can be characterized by their excessively 
long route lengths, ranging between 56 and 102 kilometers per round trip (as mea-
sured through the GIS technique). The number of stops or the average travel time 
per round trip is associated with this route length, i.e., higher travel time or higher 
number of stops for a longer route length. Furthermore, the number of passengers 
may not be evenly distributed along the whole route. For example, for route 950, 
more passengers board to go to the town center from the Bawadi Mall area com-
pared to from the Towaya area (Figure 2). The strategy to enhance the performance 
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of these two routes (930 and 950) entails splitting them into four routes (930A, 
930B, 950A, 950B). The underlying rationale for developing such a split route sce-
nario is that the long route length might hamper the overall performance level of 
the transit system.

Figure 2 illustrates the paths of the new split routes. The four new routes coincide 
with the Al Ain central area. The number of passengers along these new routes was 
calculated based on the number of passengers boarding/alighting at each bus stop. 
The route length and corresponding number of stops and average number of pas-
sengers per day for these split routes were calculated using a GIS tool. The values of 
other input variables were split according to the split length ratio of the two initial 
routes (930 and 950). The vehicle-kilometers (per day) were then calculated. The 
values of the input and output variables of these split routes are shown in Table 6. It 
is to be noted that the values of the input and output variables for the other routes 
were kept as in the base condition.

Figure 2. Paths of the split routes
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Table 6. Modified Values of Input and Output Variables for Split Routes

Route # 
(DMUs)

Input variables Output variables

Avg. 
travel 

time per 
round 

trip (hr)

# of 
vehicles

# of  
operators

Total # 
of stops 
(round 

trip)

Total avg. 
# of  

passengers  
per day

Vehicle-
km (per 

day)

930A 1.8 5 11 69 1,476 1,872

930B 1.4 3 9 59 2,214 1,476

950A 1.45 3 8 72 1,039 1,152

950B 1.25 3 8 58 1,039 972

Results and Analyses

Results and analysis of operating cost reduction scenarios 
The DEA model was run again to recalculate the efficiency the effectiveness mea-
sures of the individual routes as a result of the above service changes (scenarios). 
Figure 3 exhibits the efficiency scores for all considered scenarios. As can be seen, 
routes 930, 950, and 980 exhibit changes in efficiency scores. The efficiency scores 
of all the other routes remain fixed. 

Similarly, Figure 4 illustrates the effectiveness scores of all the routes as a result of 
all tested scenarios. Figures 3 and 4 clearly illustrate that very little change occurred 
to the efficiency and effectiveness scores as a result of the service changes. That is, 
the operating cost could be reduced as a result of the service hour changes while 
maintaining the same levels of efficiency and effectiveness.

The efficiency and effectiveness classifications remain the same (exactly as in Table 
4), similar to the classification of the base condition. Figure 5 shows the deviation 
of efficiency scores for all scenarios from the base condition. The positive deviation 
means the efficiency score of the scenarios is lesser than that of the base condition. 
The maximum deviation (0.054) was encountered for route 930.

The reduction in the service operating hours had a slight effect on the efficiency 
measure. The reason is that the changes or reductions made in operating hours 
were not accompanied by significant changes to vehicle-kilometers or number of 
passengers. The combined scenario (1, 2, and 3) is the preferred one, as this will 
reduce the operating hours for all three routes.
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Figure 3. Efficiency scores of all scenarios for different routes

Figure 4. Effectiveness scores of all scenarios for different routes
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Figure 5. Deviation of efficiency scores of different scenarios for all routes

Figure 6 shows the deviation of effectiveness scores for all combinations of scenar-
ios. It should be observed that the proposed changes to the service on routes 930, 
950, and 980 (reducing the operating hours) have a slight impact on other routes’ 
effectiveness. For example, routes 930, 970, and 990 are performing more effec-
tively under some scenarios and less effectively under others. The effectiveness 
of route 980 was not affected by any of the scenarios. The effectiveness score is a 
relative term (as compared to other routes [DMUs]). As such, changing the input or 
output variables of one route may influence other routes’ effectiveness measures.

The reason for the changes in routes 930, 970 and 990 is that their reference or peer 
DMUs have greater influence on their performance level. That is, the output results 
of this DEA model indicate that the effectiveness score of route 970 is influenced 
by its reference or peer DMUs (namely, routes 940 and 980) with the proportions 
of 33.67 and 66.34 percent, respectively. On the other hand, the efficiency score of 
route 970 is not influenced by any other route (the efficiency score of route 970 is 
1). This explains why scenario 1 (entailing changes to route 980) has affected the 
effectiveness score of route 970 and has not affected its efficiency scores.
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Figure 6. Deviation of effectiveness scores of different scenarios for all 
routes from baseline condition

It is evident from Figure 6 that scenario 1 results in the best effectiveness measures. 
However, it is to be noted that the other scenarios, although negatively affecting 
the effectiveness measures, may still be attractive scenarios, as they result in reduc-
tion of operating cost while only slightly affecting effectiveness. For example, the 
combined scenario (1, 2, and 3) may be quite attractive, as it results in the lowest 
operating cost while only slightly affecting the effectiveness measures.

Results and analysis of scenario for improving performance levels (route- 
splitting scenario)
The DEA model was run again to estimate the efficiency and effectiveness scores 
of the bus routes for the route-splitting scenario. The efficiency and effectiveness 
scores for all routes (including the split routes) are shown in Figure 7.

The performance levels of all routes are summarized in the classification matrix 
form in Table 7. It is clearly evident from the table that the splitting-routes scenario 
resulted in improving the performance level for route 950 and for one part of route 
930 (930B). Route 930A was performing efficiently but still ineffectively. The reason 
for such ineffectiveness might be the considerably low passenger demand on this 
part of the route. It is to be noted that some routes (e.g., route 900) were negatively 
affected by this scenario. The overall performance level of all routes was improved. 
As can be seen, no route was performing fairly efficiently and ineffectively.
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Figure 7. Efficiency and effectiveness scores for all routes for  
split route scenario

Table 7. Classification of Al Ain Bus Routes According to Efficiency and 
Effectiveness Scores (Route-Splitting Scenario)

	 Effective	 Fairly Effective	 Ineffective

Efficient	 930B	 960	 930A
	 950A	 990	 970 
	 950B

Fairly efficient	 940
	 980	

900
	

Inefficient	 -	 -	 -

Conclusion
In this paper, the efficiency and effectiveness of the Al Ain public bus service was 
measured and analyzed for different scenarios. The Data Envelopment Analysis 
(DEA) technique is very useful for measuring such efficiency and effectiveness in 
a situation when there is no historical data for bus service available to compare it 
with the current condition. The demonstrated scenarios indicated that strategies 
can be deployed to reduce operating hours with very little impact on the current 
efficiency and effectiveness measures. This may help the transit authority to cut 
operating cost or providing room for a better working environment for operators.
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Other scenarios to enhance service and increase the efficiency and effectiveness 
measures were also demonstrated. Such scenarios can be systematically and intui-
tively developed to enhance transit system performance in the city.

The study employed a limited number of input and output variables. Only four 
input and two output variables were used in the DEA model to measure perfor-
mance levels. It should also be noted that no exogenous or environmental factors 
(factors that are not under management control) have been considered in this 
study. It is worth noting that some of the literature considered exogenous variables 
(e.g., Barnum et al. 2007, 2008). These exogenous variables were used to “adjust” 
the values of some of the output variables to the DEA model—for instance, the 
use of population and route characteristics variables to adjust “ridership” using a 
regression model (Barnum et al. 2008). It is true that the presented models did not 
account for exogenous variables, which may be regarded as a limitation, but, none-
theless, it is believed that the selected input and output variables were collected 
accurately, and, as such, the obtained efficiency measures are reasonably accurate. 
These efficiency scores are to be regarded as the true or managerial efficiencies 
(Barnum et al. 2008). Enriching the input database with more data on the actual 
operating and maintenance cost and incorporating the exogenous variables to 
adjust the true efficiency scores could have resulted in a more sound assessment 
of the system and more reliable model results. However, these data were not accu-
rately available for use. 

The practical benefits of this approach are evident. It can be used by the transit 
authority to assess the performance measures of its services, especially when only 
limited data are available. It can also be used to assess various strategies to enhance 
service. This paper has demonstrated through examples how the DEA model 
can be used to enhance the operating environment, reduce operating cost, and 
enhance the performance levels of the inefficient or ineffective routes.

Further extensions of this work entail enhancing individual route performance 
to meet multi-criteria objectives. In this paper, the efficiency and effectiveness 
measures were tackled individually. The strategies may entail risk; for instance, 
it may result in better efficiency but poor effectiveness, or vice versa. Another 
appealing approach would entail developing a generalized performance function, 
including various vehicle, operator, user, and safety performance measures with 
various weights. This generalized function could then represent the (output) basic 
measure to enhance system performance. Coupling such generalized performance 
functions with the DEA model would provide a good balance to satisfy the needs 
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and safety requirements of users and yet take into consideration the operating 
constraints and resources.
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