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Abstract: Seven parameters of Helmert transformation are estimated using three-dimensional Cartesian 

coordinates in Sweden. Here, two cases are studied. Cartesian coordinates of RT90 and SWEREFF 93 in mm 

level accuracy for Case A are generated from secondary source. However for Case B, coordinates have been 

obtained by a field measurement. Trimble differential GPS has been used to measure coordinate in both 

SWEREFF 99 TM and RT90 reference systems in Gothenburg region, Sweden. It provides the coordinates in 

decimeter level accuracy. Helmert transformation parameters are estimated by applying MATLAB code. Seven 

parameters of Helmert transformation between RT90 and SWEREFF 93, and RT90 and SWEREFF 99 TM, and 

vice-versa are estimated. The average variance-covariance and, difference between measured and transformed 

coordinates in Case A is estimated to 3.86e-7 and 0.082 meter, respectively. However in Case B, the estimated 

transformation parameters is poor due to low level accuracy of measured coordinates and not fit in proper 

Cartesian system since the height component in 3D coordinate system provides geoid height which does not 

correspond to Cartesian coordinate. Therefore it gives high average variance-covariance as to 0.2165 and 

difference between measured and transformed coordinates to 5.498 meter. So estimation of Helmert 

transformation parameters requires Cartesian coordinates with high accuracy. 

Key words: Cartesian coordinate, Helmert transformation parameters, Bursa-Wolf mathematical model, 

SWEREFF 93, SWEREFF 99 TM, RT90.  

 

1. Introduction 

All spatial data are idealized; a generalization or simplification of real world features (Heywood et al., 2011). To 

build meaningful spatial data infrastructure, it requires defining coordinate system that describes the position in 

the real world location. However, very often people apply different type of coordinate systems depending on 

scale and purpose, e.g., SWEREFF 99 TM projected coordinate system is used for official Swedish map 

production since 2007 (Lantmäteriet, N/A). Better comparison of different spatial data in different coordinate 

systems involves conversion into one coordinate system. This conversion is widely used in cartography, 

geodesy, photogrammetry, remote sensing related professionals. Conversion of one coordinate system to another 

requires transformation parameters. 

Estimation transformation parameters are a mathematical operation which takes coordinate of one point in both 

two coordinate systems. Now the days many types of mathematical models are applied to estimate coordinate 

transformation parameters. Application of mathematical modules is also varied depending on two dimensional 

(2D) or three dimensional coordinate transformations.    

The Bursa-Wolfs’ (Bursa, 1962; Wolf, 1963) is such a mathematical model which is able to consider position, 

size and shape of network. The aim of this paper is to apply Bursa-Wolfs mathematical model to estimate 3D 

affine transformation parameters.      

2. Mathematical model of Bursa-Wolf 

The Bursa-wolfs mathematical model describes functional relationship of three dimensional rectangular 

Cartesian coordinate in pair wise. This model is well known as seven parameters of Helmert transformation. The 

general form of this mathematical model can be written as,  
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                                    Eq.1 

where, n is number of points those have known coordinates in two systems a and b; X, Y, and Z are 3D 

coordinate; δX, δY and δZ are three translation parameters along three axis; θX, θY and θZ, are three rotational 

angles around the X, Y and Z axis, respectively; S is the scale factor between both systems (Kutoglu et al., 2002; 

Al Marzooqi et al., 2005; Fan, 2005; Andrei, 2006; Guo, 2007). The R matrix in Eq. 1 can be written as, 

 

  

.                Eq.2                       

3. Computation 

Helmert transformation seven parameters are based on least squares estimation. Since Eq.1 involves 

multidimensional point data, therefore it requires linearizing matrix system. Linearization can be described by 

general form of linear equation as 

                      Eq.3 

where a1…an ϵ R
n
,
 
y and x is variables where y depends to interdependent variable x. To make simplification, 

from second order terms in Eq.3 are neglected and thus Eq.3 becomes 

                        Eq.4 

where A ϵ R
n 

which denotes to design matrix (see Guo, 2007 for more details). The Eq.1 and Eq.4 are 

comparable and both have similar properties. The Eq.1 can be written as linear form as  

                      Eq.5 

3.1    Linearizing rotation matrix 

Let, we initialize θ°X, θ°Y, θ°Z = 0 and calculate initial rotation matrix R° by applying a direct method as (Fan, 

2005) 

                     Eq.6 

where all elements rij (i,j = 1,2,3) in R matrix are function of θX, θY and θZ. It gives approximate rotation vector 

which requires correction. It can be corrected as 

                                 Eq.7 

where δθx, δθy and δθz are corresponding correction. The Eq.7 can be corrected and linearized as 

                     Eq.8  
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 where eij, fij and gij is 3X3 matrix, and 

,  and                      

.  

The Eq. 8 can be rewrite as linear form as 

.                               Eq.9 

3.2   Linearizing scale matrix 

For a single scale factor, the linearized scale matrix, S can be written as  

                    Eq.10 

where S
o
 is initialized to 1 and δS is correction (e.g., Andrei, 2006; Fan, 2005). The δS is often expressed as part 

per million (ppm). But it can be parts per billion also (e.g., Altamimi et al, 2011).  

3.3 Linearizing Bursa-Wolfs model matrix 

The Bursa-Wolfs model, Eq. 1 can be linearized by inserting Eq. 9 and Eq. 10 into Eq. 5 in case of single scale 

factor as 

                              Eq.11 

. 

The Eq. 11 can be a simpler matrix form as 

                                          Eq.12 

where j =1,2…,n, number of observations, Lj is observation vector, Aj is design matrix and δX is unknown 

transformation parameters to be calculated, can be inserted following as  

, 

, 

  . 

Elements of observation vector and design matrix can be obtain for single scale factor following as  
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3.4  Estimation of transformation parameters 

The computed transformation parameters obtained from Eq. 11 or Eq. 12 are not error free. These can be 

corrected by applying least square estimation as (Fan, 2005)  

                  Eq.13 

where   is corrected form of δX vector and  C = I. The Eq. 13 gives seven transformation parameters 

following as 

                   Eq.14 

3.5  Validation 

Calculation of transformation parameters is based on least square estimation. This process generates residual. 

This residual can be estimated using Eq. 12 or Eq. 13 as  

                    Eq.15 

where  is replaced with δX. A variance-covariance matrix (VCm) of transformation parameters can be 

computed based on so called a posteriori error estimation of variance factors ( )  which is minimized with 

increasing observation and number of parameters. It can be written as  

                                 Eq.16 

where , Op is number of observation parameters, j is number of observations and Pn is number of 

transformation parameters is being estimated. 

4. Case study 

To calculate seven parameters of Helmert transformation, Matlab code is applied (Appendix A). This code is 

rather general. It should be able to calculate Helmert seven transformation parameters of given any two Cartesian 

coordinate systems. Here two examples (Cases A and B) are presented where Case A is taken to examine the 

transformation system with Matlab code and Case B is given from new coordinate measurement in two systems.  
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4.1   Case A 

The Cartesian geocentric coordinates (Tab. 1) was obtained in autumn 2005 from Division of Geodesy, Royal 

Institute of Technology, Sweden. These data was also used by Andrei (2006) but all coordinates are not probably 

arranged in proper order. Therefore it is very difficult to make relation of sites’ coordinate in direction to easting, 

northing and height components. However, these 20 common sites coordinates in coordinate systems a and b are 

presented in table 1. Here, a and b is indicated to coordinate system of RT90 (Rikstrianguleringen) and 

SWEREFF 93, respectively in Sweden. The SWEREFF 93 is transformed from ETRF89 which was combined 

from EUREFF 89 GPS field campaign, DOSE and the International Terrestrial Reference Frame 91. The unit of 

all parameters of these two coordinate systems is meter.     

Table 1: Cartesian geocentric coordinates of common sites 

Site Id 
RT90 (in m) SWEREFF 93 (in m) 

Xb Yb Zb Xa Ya Za 

1 2441775.419 799268.100 5818729.162 2441276.712 799286.666 5818162.025 

2 3464655.838 845749.989 5270271.528 3464161.275 845805.461 5269712.429 

3 3309991.828 828932.118 5370882.280 3309496.800 828981.942 5370322.060 

4 3160763.338 759160.187 5469345.504 3160269.913 759204.574 5468784.081 

5 2248123.493 865686.595 5886425.596 2247621.426 865698.413 5885856.498 

6 3022573.157 802945.690 5540683.951 3022077.340 802985.055 5540121.276 

7 3104219.427 998384.028 5463290.505 3103716.966 998426.412 5462727.814 

8 2998189.685 931451.634 5533398.462 2997689.029 931490.201 5532835.154 

9 3199093.294 932231.327 5420322.483 3198593.776 932277.179 5419760.966 

10 3370658.823 711876.990 5349786.786 3370168.626 711928.884 5349227.574 

11 3341340.173 957912.343 5330003.236 3340840.578 957963.383 5329442.724 

12 2534031.166 975174.455 5752078.309 2533526.497 975196.347 5751510.935 

13 2838909.903 903822.098 5620660.184 2838409.359 903854.897 5620095.593 

14 2902495.079 761455.843 5609859.672 2902000.172 761490.908 5609296.343 

15 2682407.890 950395.934 5688993.082 2681904.794 950423.098 5688426.909 

16 2620258.868 779138.041 5743799.267 2619761.810 779162.964 5743233.630 

17 3246470.535 1077900.355 5365277.896 3245966.134 1077947.976 5364716.214 

18 3249408.275 692757.965 5426396.948 3248918.041 692805.543 5425836.841 

19 2763885.496 733247.387 5682653.347 2763390.878 733277.458 5682089.111 

20 2368885.005 994492.233 5818478.154 2368378.937 994508.273 5817909.286 
 

Table 2 shows the seven parameters of Helmert transformation from coordinate systems RT90 to SWEREFF 93 

with their variance-covariance which are similar with Andrei (2006). This result is obtained from adjustment 

model where all coordinates have similar weight that is described according to Reit (1999). The average 

variance-covariance is obtained to 3.86e-7. Note that inverse transformation from SWEREFF 93 to RT90 is 

followed by changing the sigh of the transformation parameters. 

Table 2: Seven parameters of Helmert transformation 

Parameters Value Variance-Covariance 

δX (m) -419.5684 3.9396e-007 

δY (m) -99.2460 1.4370e-006 

δZ (m) -591.4559 4.2571e-007 

δS (ppm) 1.0237 5.9663e-008 

δθX (arsec) 0.8502 2.0535e-007 

δθY (arsec) 1.8141 6.2006e-008 

δθZ (arsec) -7.8535 1.1634e-007 
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4.2 Case B 

A filed work has been conducted to collect coordinates of some common sites in Gothenburg region (near 

57.689195° latitude, 11.966780° longitude), Sweden in autumn, 2013. There are 10 common sites’ coordinates 

in both SWEREF 99 TM and RT90 coordinate systems collected using Trimble differential GPS. The 

coordinates of two different coordinate systems are presented in table 3. All sites are measured two times in each 

coordinate system to check their consistency. They give decimeter level accuracy. Here easting and northing 

components are in Cartesian system but height component gives height from geoid. The Swedish SWEN05LR 

Geoid model is used as reference for height component. So, third component (height) of both coordinate systems 

does not correspond to Cartesian system. 

Table 3: Coordinates (in m) of ten common sites in two different coordinate systems 

Site Id 
SWEREF 99TM (m) RT90 (m) 

Easting Northing Geoid height Easting Northing Geoid height 

1 319163.2 6398188 63.408 1271102 6402555 65.443 

2 319165.1 6398184 67.314 1271103 6402549 64.45 

3 319149.6 6398191 73.83 1271085 6402553 65.958 

4 319162.6 6398173 63.742 1271100 6402541 63.297 

5 319179.8 6398162 62.934 1271119 6402529 66.967 

6 319189.6 6398159 70.388 1271127 6402524 64.711 

7 319203.4 6398147 61.847 1271143 6402512 66.617 

8 319243.7 6398123 62.437 1271181 6402489 64.109 

9 319237.4 6398147 73.744 1271181 6402510 60.898 

10 319245.1 6398081 63.62 1271182 6402447 63.616 

Table 4 shows the seven parameters of Helmert transformation from coordinate system SWEREFF 99 TM to 

RT90 with their variance-covariance. The average variance-covariance is calculated to 0.2165. Similar as Case 

A, inverse transformation can be performed by changing sign of transformation parameters.  

Table 4: Seven parameters of Helmert transformation 

7- Parameters Value Variance-Covariance 

δX (m) 1027871.7679 0.2535 

δY (m) 72364.1120 0.2498 

δZ (m) 941534.6321 0.7243 

δS (ppm) -266.6595 0.0359 

δθX (arsec) 29421.7784 0.1122 

δθY (arsec) -25330.9216 0.1020 

δθZ (arsec) 1235.9212 0.0378 

4.3  Comparisons 

These transformation parameters applied to calculate the coordinates from one system to another. In Case A, the 

transformed coordinates are fairly similar with measured coordinates. It provides coordinates in decimeter-

millimeter difference between two systems (Tab. 5). The average difference between measured and transformed 

coordinates is 0.082 meter. However, in Case B, transformed coordinates have accuracy decameter to decimeter 

level compare to measured coordinates (Tab. 5). Easting and northing components have accuracy higher than 

height component. The average difference between measured and transformed coordinates in Case B is 5.498 

meter. This curse accuracy in Case B, because of low accuracy of measured coordinates in both SWEREFF 99 

TM and RT90 coordinates systems. Second problem was height component which was not belongs to Cartesian 

system.  
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Table 5: Difference between measured and transformed coordinates 

Site Id 
Case A (in m) Case B (in m) 

Xb Yb Zb Easting Northing Height 

1 0.026 0.042 0.181 2.978 6.074 14.625 

2 0.017 0.215 0.024 1.570 3.492 9.464 

3 0.045 0.059 0.043 1.766 0.449 3.662 

4 0.080 0.031 0.236 1.360 6.868 9.961 

5 0.064 0.321 0.128 3.267 5.971 14.980 

6 0.036 0.130 0.165 0.599 2.944 6.180 

7 0.003 0.101 0.015 3.812 4.110 16.472 

8 0.021 0.101 0.047 1.479 5.018 14.935 

9 0.054 0.000 0.096 6.625 0.630 3.232 

10 0.082 0.026 0.056 0.464 4.425 7.527 

11 0.093 0.118 0.049 
   

12 0.029 0.049 0.074 
   

13 0.031 0.136 0.132 
   

14 0.026 0.101 0.005 
   

15 0.048 0.141 0.215 
   

16 0.015 0.067 0.105 
   

17 0.077 0.043 0.171 
   

18 0.115 0.030 0.071 
   

19 0.023 0.088 0.116 
   

20 0.118 0.093 0.104 
   

5.  Conclusions 

The traditional technique of estimating coordinate transformation parameters is based on linearized mathematical 

model. The seven parameters of Helmert transformation is easier to estimate and eventually give precise 

transformation parameters those are calculated from least square sense. It is in fact the most application method 

to estimate transformation parameters and to transform from one coordinate system to another. However, in Case 

A where the coordinates of common sites’ were Cartesian system with mm level accuracy provides precise 

transformation parameters as average variance-covariance as 3.86e-7. The average difference between measured 

and transformed coordinates is obtained to cm level as to 8.2 cm. On the other hand in Case B, the coordinates 

were not perfect Cartesian system and accuracy were decimeter level. In this case the average variance-

covariance as high as 0.2165 and the average difference between measured and transformed coordinates is meter 

level as to 5.5 m. Therefore, general ideas of estimating transformation parameters using this method are the pair 

coordinates of the common sites’ have to be Cartesian and accurate enough to propagate minimum level of error. 
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Appendix A:  

%************************************************************************** 

% Matlab code to Estimation of Helmert Transformation Parameters 

% Author: Md. Tariqul Islam 

% Department of Earth Sciences, University of Gothenburg, Sweden 

% tariqul.islam@gvc.gu.se 

% Date: Sep 16, 2013 

%########################################################################## 

 

format long g; clc; clear; 

 

load data.txt; 

data= data/1000000;        % data (in m) are divided by one million (to make ppm)  

 

S1=1; A1=0;  A2=0; A3=0;  % initialization of scale factor and other three rotation angles 

 

p=206265;    % radian to arcsec  

C1=eye(60,60); 

C=inv(C1); 

 

del_S=1;    % initialization of difference of scale factor and rotation angles 

del_A1=1; 

del_A2=1; 

del_A3=1; 

while (abs(del_S)>1e-10)&(abs(del_A1)>1e-10)&(abs(del_A2)>1e-10)&(abs(del_A3)>1e-10) 

 

A=[]; 

L=[]; 

http://www.lantmateriet.se/en/Maps-and-geographic-information/GPS-and-geodetic-surveys/Geodesy/Transformations/RT-90---SWEREF-99/
http://www.lantmateriet.se/en/Maps-and-geographic-information/GPS-and-geodetic-surveys/Geodesy/Transformations/RT-90---SWEREF-99/
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 R=[cos(A2)*cos(A3), cos(A1)*sin(A3)+sin(A1)*sin(A2)*cos(A3),    sin(A1)*sin(A3)-

cos(A1)*sin(A2)*cos(A3); 

   -cos(A2)*sin(A3), cos(A1)*cos(A3)-sin(A1)*sin(A2)*sin(A3),    sin(A1)*cos(A3)+cos(A1)*sin(A2)*sin(A3); 

    sin(A2),        -sin(A1)*cos(A2),                           cos(A1)*cos(A2)];    

                                               % R matrix in section 2 

r11o=R(1,1); r12o=R(1,2); r13o=R(1,3);   % Linearization of rotation matrix 

r21o=R(2,1); r22o=R(2,2); r23o=R(2,3); 

r31o=R(3,1); r32o=R(3,2); r33o=R(3,3); 

 

    for i=1:size(data(:,1)) 

    a14=(r11o*data(i,2)+r12o* data(i,3)+r13o*data(i,4)); 

    a24=(r21o*data(i,2)+r22o* data (i,3)+r23o*data(i,4)); 

    a34=(r31o*data(i,2)+r32o*data(i,3)+r33o*data (i,4)); 

    a15=(S1*(-r13o*data(i,3)+r12o*data(i,4))); 

    a25=(S1*(-r23o*data(i,3)+r22o*data(i,4))); 

    a35=(S1*(-r33o*data(i,3)+r32o*data(i,4))); 

    a16= -S1*cos(A3)*(sin(A2)*data(i,2)+r32o*data(i,3)+r33o*data(i,4)); 

    a26= S1*sin(A3)*(sin(A2)*data(i,2)+r32o*data(i,3)+r33o*data(i,4)); 

    a36= S1*(cos(A2)*data(i,2)+sin(A1)*sin(A2)*data(i,3)-cos(A1)*sin(A2)*data(i,4)); 

    a17=(S1*(r21o*data(i,2)+r22o*data(i,3)+r23o*data(i,4))); 

    a27=(-S1*(r11o*data(i,2)+r12o*data(i,3)+r13o*data(i,4))); 

    a37=0; 

 

    Ai =[1,  0,  0,  a14,    a15,    a16,    a17;   

         0,  1,  0,  a24,    a25,    a26,    a27; 

         0,  0,  1,  a34,    a35,    a36,    a37;];   % Linearization of model matrix in section 3.3 

   A=[A;Ai]; 

 

    L1=(data(i,5)-S1*(r11o*data(i,2)+r12o*data(i,3)+r13o*data(i,4))); 

    L2=(data(i,6)-S1*(r21o*data(i,2)+r22o*data(i,3)+r23o*data(i,4))); 

    L3=(data(i,7)-S1*(r31o*data(i,2)+r32o*data(i,3)+r33o*data(i,4))); 

 

  Li=[L1;L2;L3];  L=[L;Li]; 

end; 

delX = inv(A'*C*A)*A'*C*L;  % Estimation of 7 transformation parameters, see section 3.4 

 

        del_S = delX(4); 

        del_A1 = delX(5); 

        del_A2 = delX(6); 

        del_A3 = delX(7); 

 

        S1= S1+del_S; 

        A1=A1+del_A1; 

        A2= A2+del_A2; 

        A3= A3+del_A3; 

 

end 

dx=delX(1)*1000000; dy=delX(2)*1000000; dz=delX(3)*1000000; S1=(S1-1)*1000000;  

   % Conversion from ppm to m 

 

A1=A1*p; A2=A2*p; A3=A3*p;   % Conversion from radian to arcsec 

disp(sprintf('dx = %.12f , \ndy = %.12f ,\ndz = %.12f',dx, dy, dz)) 

disp(sprintf('S1 = %.12f , \nA1 = %.12f ,\nA2 = %.12f,\nA3 =%.12f',S1,A1,A2,A3)) 

 

ep_cap=L-A*delX;    % Validation estimation 

CO_v=(ep_cap'*C*ep_cap)/(3*20-7);  % Variance-covariance matrix, see section 3.5 

CXX=(CO_v)*inv(A'*C*A); 

CXX=[sqrt(CXX(1,1)); sqrt(CXX(2,2)); sqrt(CXX(3,3)); sqrt(CXX(4,4)); sqrt(CXX(5,5)); sqrt(CXX(6,6)); 

sqrt(CXX(7,7)) ] 

% End, here you go! 


