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Abstract: Seven parameters of Helmert transformation are estimated using three-dimensional Cartesian
coordinates in Sweden. Here, two cases are studied. Cartesian coordinates of RT90 and SWEREFF 93 in mm
level accuracy for Case A are generated from secondary source. However for Case B, coordinates have been
obtained by a field measurement. Trimble differential GPS has been used to measure coordinate in both
SWEREFF 99 TM and RT90 reference systems in Gothenburg region, Sweden. It provides the coordinates in
decimeter level accuracy. Helmert transformation parameters are estimated by applying MATLAB code. Seven
parameters of Helmert transformation between RT90 and SWEREFF 93, and RT90 and SWEREFF 99 TM, and
vice-versa are estimated. The average variance-covariance and, difference between measured and transformed
coordinates in Case A is estimated to 3.86e-7 and 0.082 meter, respectively. However in Case B, the estimated
transformation parameters is poor due to low level accuracy of measured coordinates and not fit in proper
Cartesian system since the height component in 3D coordinate system provides geoid height which does not
correspond to Cartesian coordinate. Therefore it gives high average variance-covariance as to 0.2165 and
difference between measured and transformed coordinates to 5.498 meter. So estimation of Helmert
transformation parameters requires Cartesian coordinates with high accuracy.

Key words: Cartesian coordinate, Helmert transformation parameters, Bursa-Wolf mathematical model,
SWEREFF 93, SWEREFF 99 TM, RT90.

1. Introduction

All spatial data are idealized; a generalization or simplification of real world features (Heywood et al., 2011). To
build meaningful spatial data infrastructure, it requires defining coordinate system that describes the position in
the real world location. However, very often people apply different type of coordinate systems depending on
scale and purpose, e.g., SWEREFF 99 TM projected coordinate system is used for official Swedish map
production since 2007 (Lantméteriet, N/A). Better comparison of different spatial data in different coordinate
systems involves conversion into one coordinate system. This conversion is widely used in cartography,
geodesy, photogrammetry, remote sensing related professionals. Conversion of one coordinate system to another
requires transformation parameters.

Estimation transformation parameters are a mathematical operation which takes coordinate of one point in both
two coordinate systems. Now the days many types of mathematical models are applied to estimate coordinate
transformation parameters. Application of mathematical modules is also varied depending on two dimensional
(2D) or three dimensional coordinate transformations.

The Bursa-Wolfs’ (Bursa, 1962; Wolf, 1963) is such a mathematical model which is able to consider position,
size and shape of network. The aim of this paper is to apply Bursa-Wolfs mathematical model to estimate 3D
affine transformation parameters.

2. Mathematical model of Bursa-Wolf

The Bursa-wolfs mathematical model describes functional relationship of three dimensional rectangular
Cartesian coordinate in pair wise. This model is well known as seven parameters of Helmert transformation. The
general form of this mathematical model can be written as,
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where, n is number of points those have known coordinates in two systems a and b; X, Y, and Z are 3D
coordinate; dy, Jdy and J, are three translation parameters along three axis; 6y, 6y and 6, are three rotational
angles around the X, Y and Z axis, respectively; S is the scale factor between both systems (Kutoglu et al., 2002;
Al Marzooqi et al., 2005; Fan, 2005; Andrei, 2006; Guo, 2007). The R matrix in Eg. 1 can be written as,
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3. Computation

Helmert transformation seven parameters are based on least squares estimation. Since Eq.1 involves
multidimensional point data, therefore it requires linearizing matrix system. Linearization can be described by
general form of linear equation as

¥ = agxy + o+ Gy Eq.3

where a;...a, € R", y and x is variables where y depends to interdependent variable x. To make simplification,
from second order terms in Eqg.3 are neglected and thus Eq.3 becomes

y=Ax Eq.4

where A ¢ R" which denotes to design matrix (see Guo, 2007 for more details). The Eq.1 and Eq.4 are
comparable and both have similar properties. The Eg.1 can be written as linear form as

X, = 6X + SRX, Eg.5
3.1 Linearizing rotation matrix

Let, we initialize 6°, 6°, 8°, = 0 and calculate initial rotation matrix R° by applying a direct method as (Fan,
2005)
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where all elements r;; (i,j = 1,2,3) in R matrix are function of 6y, 6y and ;. It gives approximate rotation vector
which requires correction. It can be corrected as

By = 6% + 06y

B = 8% + 591,-} Eq.7
B, = 8% + 68,

where 66y, 06, and 96, are corresponding correction. The Eq.7 can be corrected and linearized as
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The Eq. 8 can be rewrite as linear form as
R =R(6y 8, 8,) =R° + E58, + FG6, + (58, Eq.9
3.2 Linearizing scale matrix
For a single scale factor, the linearized scale matrix, S can be written as
S=5"+4; Eq.10

where S° is initialized to 1 and &g is correction (e.g., Andrei, 2006; Fan, 2005). The Js is often expressed as part
per million (ppm). But it can be parts per billion also (e.g., Altamimi et al, 2011).

3.3 Linearizing Bursa-Wolfs model matrix

The Bursa-Wolfs model, Eq. 1 can be linearized by inserting Eq. 9 and Eq. 10 into Eq. 5 in case of single scale
factor as

X, =6X +(5°+5:)(R" + EG 6, + F56, + GB )X, Eq.11
~ 6X +(R°5° + R°6; + E60,5° + F68,5° + 668, 5°)%,.
The EqQ. 11 can be a simpler matrix form as
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wherej =1,2...,n, number of observations, L; is observation vector, A; is design matrix and 6X is unknown
transformation parameters to be calculated, can be inserted following as

L, = X, — R°5°%,,

4
Ixd
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GX = [6X; 6Y; 6Z; 85; 58;; 66, 66;].

Elements of observation vector and design matrix can be obtain for single scale factor following as

Iy = X7 — .5'“'{?1_':'1.2_'.{-" + 1’:1'&' +’-'"1E"53_.?}a
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3.4 Estimation of transformation parameters

The computed transformation parameters obtained from Eqg. 11 or Eq. 12 are not error free. These can be
corrected by applying least square estimation as (Fan, 2005)

5% = (ATC A ATCAL Eq.13
where &8X is corrected form of 56X vector and C = I. The Eqg. 13 gives seven transformation parameters
following as

Gy: Gy, 0z = 6X0(1,2,3),

§=15°4 55 =6X(4),

g, =82 + 68, = 54(3), Eq.14
b, = 82 + 66, = 6X(6),

6, =82 +68; = 6X(7)

3.5 Validation

Calculation of transformation parameters is based on least square estimation. This process generates residual.
This residual can be estimated using Eqg. 12 or Eq. 13 as

e=L—ASX Eq.15

where X is replaced with dX. A variance-covariance matrix (VC,) of transformation parameters can be
computed based on so called a posteriori error estimation of variance factors (£2) which is minimized with
increasing observation and number of parameters. It can be written as

VCy =a2(ATC At Eq.16
Tpe—1

where 52 = Z c = O, is number of observation parameters, j is number of observations and P, is number of
pd—Fnm

transformation parameters is being estimated.

4. Case study

To calculate seven parameters of Helmert transformation, Matlab code is applied (Appendix A). This code is
rather general. It should be able to calculate Helmert seven transformation parameters of given any two Cartesian
coordinate systems. Here two examples (Cases A and B) are presented where Case A is taken to examine the
transformation system with Matlab code and Case B is given from new coordinate measurement in two systems.
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41 Case A

The Cartesian geocentric coordinates (Tab. 1) was obtained in autumn 2005 from Division of Geodesy, Royal
Institute of Technology, Sweden. These data was also used by Andrei (2006) but all coordinates are not probably
arranged in proper order. Therefore it is very difficult to make relation of sites’ coordinate in direction to easting,
northing and height components. However, these 20 common sites coordinates in coordinate systems a and b are
presented in table 1. Here, a and b is indicated to coordinate system of RT90 (Rikstrianguleringen) and
SWEREFF 93, respectively in Sweden. The SWEREFF 93 is transformed from ETRF89 which was combined
from EUREFF 89 GPS field campaign, DOSE and the International Terrestrial Reference Frame 91. The unit of
all parameters of these two coordinate systems is meter.

Table 1: Cartesian geocentric coordinates of common sites

Site Id RT90 (in m) SWEREFF 93 (in m)
Xy Y, Z, X, Y, Z
1 2441775419 | 799268.100 | 5818729.162| 2441276.712| 799286.666 | 5818162.025
2 3464655.838 | 845749.989 | 5270271528 | 3464161.275| 845805.461| 5269712.429
3 3309991.828 | 828932.118| 5370882.280 | 3309496.800 | 828981.942| 5370322.060
4 3160763.338 | 759160.187 | 5469345504 | 3160269.913| 759204.574| 5468784.081
5 2248123.493 | 865686.595 | 5886425596 | 2247621.426| 865698.413| 5885856.498
6 3022573157 | 802945.690 | 5540683.951| 3022077.340| 802985.055| 5540121.276
7 3104210.427 | 998384.028 | 5463290.505 | 3103716.966| 998426.412| 5462727.814
8 2998189.685 | 931451.634| 5533398.462 | 2997689.029| 931490.201| 5532835.154
9 3199093.294 | 932231.327 | 5420322.483 | 3198593.776| 932277.179| 5419760.966
10 3370658.823 | 711876.990 | 5349786.786 | 3370168.626| 711928.884| 5349227.574
11 3341340.173| 957912.343| 5330003.236 | 3340840.578| 957963.383| 5329442.724
12 2534031166 | 975174.455| 5752078.309 | 2533526.497 | 975196.347 | 5751510.935
13 2838909.903 | 903822.098 | 5620660.184 | 2838409.359 | 903854.897 | 5620095.593
14 2902495.079 | 761455.843 | 5609859.672 | 2902000.172| 761490.908| 5609296.343
15 2682407.890 | 950395.934 | 5688993.082 | 2681904.794| 950423.098 | 5688426.909
16 2620258.868 | 779138.041| 5743799.267 | 2619761.810| 779162.964| 5743233.630
17 3246470535 | 1077900.355 | 5365277.896| 3245966.134 | 1077947.976| 5364716.214
18 3249408.275| 692757.965| 5426396.948 | 3248918.041| 692805.543 | 5425836.841
19 2763885.496 | 733247.387 | 5682653.347 | 2763390.878| 733277.458| 5682089.111
20 2368885.005 | 994492.233 | 5818478.154 | 2368378.937| 994508.273| 5817909.286

Table 2 shows the seven parameters of Helmert transformation from coordinate systems RT90 to SWEREFF 93
with their variance-covariance which are similar with Andrei (2006). This result is obtained from adjustment
model where all coordinates have similar weight that is described according to Reit (1999). The average
variance-covariance is obtained to 3.86e-7. Note that inverse transformation from SWEREFF 93 to RT90 is
followed by changing the sigh of the transformation parameters.

Table 2: Seven parameters of Helmert transformation

Parameters Value Variance-Covariance
dx (m) -419.5684 3.9396e-007
dy (m) -99.2460 1.4370e-006
oz (m) -591.4559 4.2571e-007
ds (ppm) 1.0237 5.9663e-008
00y (arsec) 0.8502 2.0535e-007
o6y (arsec) 1.8141 6.2006e-008
00 (arsec) -7.8535 1.1634e-007
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42 Case B

A filed work has been conducted to collect coordinates of some common sites in Gothenburg region (near
57.689195° latitude, 11.966780° longitude), Sweden in autumn, 2013. There are 10 common sites’ coordinates
in both SWEREF 99 TM and RT90 coordinate systems collected using Trimble differential GPS. The
coordinates of two different coordinate systems are presented in table 3. All sites are measured two times in each
coordinate system to check their consistency. They give decimeter level accuracy. Here easting and northing
components are in Cartesian system but height component gives height from geoid. The Swedish SWENO5LR
Geoid model is used as reference for height component. So, third component (height) of both coordinate systems
does not correspond to Cartesian system.

Table 3: Coordinates (in m) of ten common sites in two different coordinate systems

Site Id SWEREF 99TM (m) RT90 (m)
Easting | Northing | Geoid height | Easting | Northing | Geoid height
1 319163.2 | 6398188 63.408 1271102 | 6402555 65.443
2 319165.1 | 6398184 67.314 1271103 | 6402549 64.45
3 319149.6 | 6398191 73.83 1271085 | 6402553 65.958
4 319162.6 | 6398173 63.742 1271100 | 6402541 63.297
5 319179.8 | 6398162 62.934 1271119 | 6402529 66.967
6 319189.6 | 6398159 70.388 1271127 | 6402524 64.711
7 319203.4 | 6398147 61.847 1271143 | 6402512 66.617
8 319243.7 | 6398123 62.437 1271181 | 6402489 64.109
9 319237.4 | 6398147 73.744 1271181 | 6402510 60.898
10 319245.1 | 6398081 63.62 1271182 | 6402447 63.616

Table 4 shows the seven parameters of Helmert transformation from coordinate system SWEREFF 99 TM to
RT90 with their variance-covariance. The average variance-covariance is calculated to 0.2165. Similar as Case
A, inverse transformation can be performed by changing sign of transformation parameters.

Table 4: Seven parameters of Helmert transformation

7- Parameters Value Variance-Covariance
dx (m) 1027871.7679 0.2535
dy (m) 72364.1120 0.2498
o7 (m) 941534.6321 0.7243
ds (ppm) -266.6595 0.0359
00y (arsec) 29421.7784 0.1122
06y (arsec) -25330.9216 0.1020
06 (arsec) 1235.9212 0.0378

4.3 Comparisons

These transformation parameters applied to calculate the coordinates from one system to another. In Case A, the
transformed coordinates are fairly similar with measured coordinates. It provides coordinates in decimeter-
millimeter difference between two systems (Tab. 5). The average difference between measured and transformed
coordinates is 0.082 meter. However, in Case B, transformed coordinates have accuracy decameter to decimeter
level compare to measured coordinates (Tab. 5). Easting and northing components have accuracy higher than
height component. The average difference between measured and transformed coordinates in Case B is 5.498
meter. This curse accuracy in Case B, because of low accuracy of measured coordinates in both SWEREFF 99
TM and RT90 coordinates systems. Second problem was height component which was not belongs to Cartesian
system.
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Table 5: Difference between measured and transformed coordinates

Site Id Case A (inm) Case B (in m)

X Yy Z Easting | Northing | Height
1 0.026 0.042 0.181 2.978 6.074 14.625
2 0.017 0.215 0.024 1.570 3.492 9.464
3 0.045 0.059 0.043 1.766 0.449 3.662
4 0.080 0.031 0.236 1.360 6.868 9.961
5 0.064 0.321 0.128 3.267 5.971 14.980
6 0.036 0.130 0.165 0.599 2.944 6.180
7 0.003 0.101 0.015 3.812 4.110 16.472
8 0.021 0.101 0.047 1.479 5.018 14.935
9 0.054 0.000 0.096 6.625 0.630 3.232
10 0.082 0.026 0.056 0.464 4.425 7.527
1 0.093 0.118 0.049
12 0.029 0.049 0.074
13 0.031 0.136 0.132
14 0.026 0.101 0.005
15 0.048 0.141 0.215
16 0.015 0.067 0.105
17 0.077 0.043 0.171
18 0.115 0.030 0.071
19 0.023 0.088 0.116
20 0.118 0.093 0.104

5. Conclusions

The traditional technique of estimating coordinate transformation parameters is based on linearized mathematical
model. The seven parameters of Helmert transformation is easier to estimate and eventually give precise
transformation parameters those are calculated from least square sense. It is in fact the most application method
to estimate transformation parameters and to transform from one coordinate system to another. However, in Case
A where the coordinates of common sites’ were Cartesian system with mm level accuracy provides precise
transformation parameters as average variance-covariance as 3.86e-7. The average difference between measured
and transformed coordinates is obtained to cm level as to 8.2 cm. On the other hand in Case B, the coordinates
were not perfect Cartesian system and accuracy were decimeter level. In this case the average variance-
covariance as high as 0.2165 and the average difference between measured and transformed coordinates is meter
level as to 5.5 m. Therefore, general ideas of estimating transformation parameters using this method are the pair
coordinates of the common sites’ have to be Cartesian and accurate enough to propagate minimum level of error.
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Appendix A:

%x **k* * *k*k *kk * *k*k *hkkkkkhkkhkkihkkik *k*k *kk **k* **k* *

% Matlab code to Estimation of Helmert Transformation Parameters

% Author: Md. Tariqul Islam

% Department of Earth Sciences, University of Gothenburg, Sweden

% tariqul.islam@gvc.gu.se

% Date: Sep 16, 2013

Qo R R T R R R R

format long g;  clc; clear;

load data.txt;
data= data/1000000; % data (in m) are divided by one million (to make ppm)

S1=1; Al=0; A2=0; A3=0; % initialization of scale factor and other three rotation angles

p=206265; % radian to arcsec
Cl=eye(60,60);
C=inv(C1);

del_S=1; % initialization of difference of scale factor and rotation angles
del_Al=1,;

del_A2=1;

del_A3=1,;

while (abs(del_S)>1e-10)&(abs(del_Al)>1e-10)&(abs(del_A2)>1e-10)&(abs(del_A3)>1e-10)

A=
L=[];
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R=[cos(A2)*cos(A3), cos(Al)*sin(A3)+sin(Al)*sin(A2)*cos(A3), sin(Al)*sin(A3)-
cos(Al)*sin(A2)*cos(A3);

-c0s(A2)*sin(A3), cos(Al)*cos(A3)-sin(Al)*sin(A2)*sin(A3), sin(Al)*cos(A3)+cos(Al)*sin(A2)*sin(A3);

sin(A2), -sin(Al)*cos(A2), cos(Al)*cos(A2)];

% R matrix in section 2

rilo=R(1,1); ri20=R(1,2); r13o0=R(1,3); % Linearization of rotation matrix
r21o=R(2,1); r220=R(2,2); r230=R(2,3);
r310=R(3,1); r320=R(3,2); r330=R(3,3);

for i=1:size(data(:,1))

al4=(rllo*data(i,2)+r120* data(i,3)+r13o*data(i,4));
a24=(r2lo*data(i,2)+r220* data (i,3)+r23o0*data(i,4));
a34=(r3lo*data(i,2)+r320*data(i,3)+r330*data (i,4));
al5=(S1*(-r13o*data(i,3)+r12o0*data(i,4)));
a25=(S1*(-r23o*data(i,3)+r220*data(i,4)));
a35=(S1*(-r33o0*data(i,3)+r320*data(i,4)));

al6= -S1*cos(A3)*(sin(A2)*data(i,2)+r32o0*data(i,3)+r33o0*data(i,4));
a26= S1*sin(A3)*(sin(A2)*data(i,2)+r32o0*data(i,3)+r330*data(i,4));
a36= S1*(cos(A2)*data(i,2)+sin(Al)*sin(A2)*data(i,3)-cos(Al)*sin(A2)*data(i,4));
al7=(S1*(r2lo*data(i,2)+r220*data(i,3)+r23o0*data(i,4)));
a27=(-S1*(rllo*data(i,2)+r120*data(i,3)+r13o*data(i,4)));

a37=0;

Ai=[1, 0, 0, al4, al5, al6, al7v;

0, 1, 0, a24, a25, a26, a27;

0, 0, 1, a34, a35, a36, a37;]; % Linearization of model matrix in section 3.3
A=[AAI];

L1=(data(i,5)-S1*(r11lo*data(i,2)+rl20*data(i,3)+rl3o0*data(i,4)));
L2=(data(i,6)-S1*(r21o*data(i,2)+r220*data(i,3)+r23o0*data(i,4)));
L3=(data(i,7)-S1*(r3lo*data(i,2)+r320*data(i,3)+r33o0*data(i,4)));

Li=[L1;L2;L3]; L=[L;Li];
end;
delX = inv(A*C*A)*A*C*L; % Estimation of 7 transformation parameters, see section 3.4

del_S = delX(4);

del_Al = delX(5);
del_A2 = delX(6);
del_A3 = delX(7);

S1=Sl+del_S;

Al=Al+del_AL,;
A2= A2+del_A2;
A3= A3+del_AS3;

end
dx=delX(1)*1000000; dy=delX(2)*1000000; dz=delX(3)*1000000; S$1=(S1-1)*1000000;
% Conversion from ppmto m

Al=Al*p; A2=A2*p; A3=A3*p; % Conversion from radian to arcsec
disp(sprintf(‘'dx = %.12f , \ndy = %.12f ,\ndz = %.12f',dx, dy, dz))
disp(sprintf('S1 = %.12f , \nAl = %.12f \nA2 = %.12f\nA3 =%.12f' ,S1,A1,A2,A3))

ep_cap=L-A*delX; % Validation estimation
CO_v=(ep_cap™*C*ep_cap)/(3*20-7); % Variance-covariance matrix, see section 3.5
CXX=(CO_v)*inv(A*C*A);

CXX=[sqrt(CXX(1,1)); sart(CXX(2,2)); sart(CXX(3,3)); sart(CXX(4,4)); sqrt(CXX(5,5)); sqrt(CXX(6,6));
sqrt(CXX(7,7)) ]

% End, here you go!
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